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This article continues an exploration of instabilities of jets in two-dimensional, inviscid
fluid on the beta-plane. At onset, for particular choices of the physical parameters,
the normal modes responsible for instability have critical levels that coalesce along
the axis of the jet. Matched asymptotic expansion (critical layer theory) is used to
derive a reduced model describing the dynamics of these modes. Because the velocity
profile is locally parabolic in the vicinity of the critical levels the dynamics is richer
than in standard critical layer problems. The model captures the inviscid saturation of
unstable modes, the excitation of neutral Rossby waves, and the decay of disturbances
when there are no discrete normal modes. Inviscid saturation occurs when the vorticity
distribution twists up into vortical structures that take the form of either a pair of
‘cat’s eye’ patterns straddling the jet axis, or a single row of vortices. The addition
of weak viscosity destroys these cat’s eye structures and causes the critical layer
to spread diffusively. The results are compared with numerical simulations of the
governing equations.

1. Introduction
In paper I (Balmforth & Piccolo 2001), we considered the onset of meandering in

an unstable, nearly inviscid jet. Such flows are commonly used as models of wakes
behind obstacles, geophysical currents and laboratory experiments in rotating annuli
(e.g. Solomon, Holloway & Swinney 1993), and display a rich variety of complex fluid
dynamical behaviour. A specific issue of recent interest has been the transport and
mixing in the resulting unsteady flows (e.g. del Castillo-Negrete & Morrison 1993),
a problem of notable geophysical importance. But a previously unexplored question
was how weak linear instabilities saturate into finite-amplitude meanders, a question
we addressed in paper I.

In paper I, we focused on a Bickley jet (a two-dimensional flow with a sech2y
velocity profile, where y is the cross-stream coordinate) of incompressible fluid on
the beta-plane. The main difficulty in the analysis is that superficial singularities
arise at the critical levels of neutral waves (the levels along which the wave speed
matches the flow). These singularities reflect how the solution develops unresolved
sharp spatial gradients in narrow regions surrounding the critical levels (the critical
layers). Matched asymptotics are then needed to combine an inner solution that
resolves the critical layer structure with the outer, normal-mode solution. The result
of the asymptotic manipulations is a special reduced system, the ‘single-wave model’,
that describes the particular bifurcation to instability. The ‘single wave’ refers to the
distinct, excited normal mode that occurs in spatially periodic flows. If the flow is
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not geometrically constrained, bands of unstable wavenumbers occur and growing
disturbances do not take the form of simple waves. However, spatially periodic jets
are more relevant to experiments in circular geometry.

In the current article, we extend the analysis of paper I by considering a special
limit of the physical problem. More specifically, linear stability theory identifies a
point of neutral stability on the parameter plane where the critical levels (which, in
general, occur to either side of the jet axis) merge together along the axis of the jet.
The dynamics at this special point is not captured by the theory of paper I, partly
because the mean velocity inside the critical layer becomes parabolic, in contrast to
the linear shear of the usual critical layer. Here, our goal is to formulate a reduced
model that captures the weakly nonlinear dynamics of the merging critical layers.
Because we tune the system more finely to arrive at this model, we build in more
physics and the dynamics is richer. With the model, we explore the saturation of
unstable modes whose critical layers coalesce along the jet axis, as well as a variety
of other phenomena also captured by the asymptotic analysis.

From the perspective of nonlinear dynamics and pattern formation, the bifurcation
we study is of a higher co-dimension than in paper I. Not only do we capture the
bifurcation of an unstable mode from the continuous spectrum, but we also ‘unfold’
two other bifurcations: the interaction between two discrete, neutral Rossby waves
(that leads to a conventional Hamiltonian Hopf bifurcation), and the appearance of
a Rossby wave out of the continuum through its edge. Whilst this may be of lesser
interest to the fluid dynamicist, it does indicate that the situation is rather special,
and aids in deciding which other systems may suffer a similar transition, and that can
therefore be described by the same reduced model.

Despite the specific nature of the problem we consider in this article, the results
have a more general flavour for two reasons. First, we use the Bickley jet primarily
for convenience and continuity with paper I. However, any jet profile can be explored
with our methods (there remains a question regarding symmetry about the jet axis that
we return to in our conclusions). Second, the reduced model captures more dynamics
than the single-wave model of paper I. Therefore, although the model has limited
asymptotic validity, it contains more physics and furnishes a useful ‘minimal model’
of jet dynamics. In particular, in studies of mixing, the reduced model should be the
preferred starting point. This was recognized previously by del Castillo-Negrete &
Morrison (1993) whose primary interest was in modelling the transport in experiments
with rotating annuli (Solomon et al. 1993). However, their model, which is related to
that derived here, lacked the theoretical foundation we provide.

The dynamics of disturbances near the axis of a jet has also been considered
by Brunet & Warn (1990) and Brunet & Haynes (1995). Their interest focused
on how externally introduced perturbations decayed over this special region, and
was motivated by simple linear arguments which suggest that perturbations in the
streamfunction persist for longer at ‘shearless’ points. An important difference between
the analysis conducted here and those of Brunet & Warn and Brunet & Haynes is
that we are concerned with an unstable mode that, through its amplification, creates a
critical layer along the axis of the jet. In the other studies there was no normal mode
and the critical layer had to be suitably forced by an initial disturbance. Nevertheless,
there are some common features in the two problems as we uncover later.

A second class of modes with critical levels along the axis of the Bickley jet
has also been studied previously (Howard & Drazin 1964; Mallier & Davies 1999;
Swaters 1999). These ‘singular modes’ are non-smooth solutions of the inviscid linear
problem. By suitably selecting an initial condition, Mallier & Davies and Swaters
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have considered the evolution of these modes. Because they are not smooth, the
singular modes potentially generate more ‘nonlinear’ behaviour than the smooth
modes considered here. However, being linearly stable and often co-existing with
smooth, unstable modes, it is difficult to argue for their physical relevance.

2. Outline of the problem
2.1. Formulation

On the (x, y)-plane, the jet can be described by a streamfunction and the vorticity.
The dimensionless governing equations are

ωt +Uωx + J(ψ,ω) = ν∇2ω + (U ′′ − β)ψx, (2.1)

ψyy + ψxx = ω, (2.2)

where ψ(x, y, t) and ω(x, y, t) denote those parts of the streamfunction and vorticity
corresponding to an evolving perturbation and have been separated from the basic
flow of the Bickley jet, which is described by the velocity profile, U(y) = sech2y. The
parameter β measures the size of the variable Coriolis force, and ν is a viscosity
parameter (an inverse Reynolds number). The nonlinear term is written as J(ψ,ω) =
ψxωy − ψyωx.

In x, we choose periodic boundary conditions; this allows us to quantize the system
and control the number of unstable modes. As we argued in paper I, the precise
choice of boundary conditions in y is not especially important because the unstable
modes decay exponentially away from the core of the jet, and because we only add
viscosity as a perturbation (in which case, viscous effects become important only
inside the modal critical layers). For linear stability studies we use either a bounded
jet with −L 6 y 6 L and ψ(x,±L, t) = 0, or an unbounded jet, with ψ(x, y, t) finite as
y → ±∞. In the weakly nonlinear analysis, we make use of the unbounded jet, and
for numerical computations we use periodic boundary conditions in y.

2.2. Inviscid linear theory

Linear stability theory proceeds by looking for solutions of the linearized equations of
the form exp ik(x− ct), where k is the (streamwise) wavenumber and c is the (possibly
complex) wave speed, or eigenvalue. As discussed in paper I, there are three classes of
solutions. First, there is a continuous spectrum that occurs whenever the wave speed
of a neutral wave matches the mean flow: c = cr ∈ [0, 1]. Second, if β < 0, there
may also be Rossby waves (smooth, discrete eigenvalues with c = cr and cr > 1).
Third, when −2 6 β 6 2/3, there are complex conjugate pairs over certain ranges of
wavenumber k, of which one is unstable.

In figure 1, we illustrate the range of unstable modes that correspond to meandering
(the even or sinuous modes). The upper boundary of the unstable range locates a
smooth neutral mode embedded in the continuous spectrum; in paper I we refered
to these as ‘inflectional’ modes because their critical levels line up with the inflexion
points of the mean ‘profile’, U(y)− βy2/2. The distinguishing feature of these modes
is that, because of the aligment of their critical levels with the inflexion points, they
are smooth eigenmodes.

The lower piece of the stability boundary shown in figure 1 is rather different. The
neutral modes lying along this curve are Rossby waves with cr > 1. Thus, there are
two kinds of transitions to instability: in one case, an unstable mode appears by
directly bifurcating from the continuous spectrum. In the second, two Rossby waves
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Figure 1. (a) Unstable range of wavenumber for the even (sinuous) modes of a bounded Bickley
jet in a domain with L = 10. The thick curve shows an inflectional mode with β = k2(4 − k2)/6,
which marks the upper stability boundary for an unbounded flow. (b) A sketch of the two possible
transitions to instability. (c, d) Numerically determined eigenvalues, cr and ci, as functions of β for
k = 2.26, 2.3 and 2.38. This shows three horizontal cuts through the (β, k)-parameter plane near the

special point, (β, k) = (−2,
√

6). (e, f) Three vertical cuts, with varying k and β = −1.98, −1.99 and
−1.996. The dashed lines in (a) show the location of the cuts of (c–f ).
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collide in an unstable, resonant, mode interaction (see Drazin, Beaumont & Coaker
1982). The two pathways to instability are sketched in figure 1(b).

The importance of the special point (β, k) = (−2,
√

6) is now clear. Here the upper
and lower stability boundaries intersect, indicating that both kinds of bifurcations
occur simultaneously. The behaviour of the eigenvalues near this special point is
illustrated in figure 1 (c–f ). Mode interaction leads to a quadratic dependence of the
eigenvalue, ci, on the distance to the lower stability boundary. By contrast, when
the unstable modes bifurcate out of the continuum on the upper stability boundary,
the dependence of ci is linear. Figure 1 also reveals the origin of one of the interacting
Rossby waves: as β → −2, for each of the values of k, the mode with lower wave
speed disappears into the continuous spectrum through c = (1, 0). This trend was
previously noted by Drazin et al. (1982).

In summary, the cuts shown in figure 1 illustrate the important facets of the eigen-
value problem in the vicinity of the special point, (−2,

√
6). Here, three bifurcations

occur at once: the bifurcation of a conjugate pair out of the continuous spectrum,
the splitting of this pair into two real modes, and the disappearance of one of these
real modes back into the continuum through the branch point at c = 1.

3. Critical layers along the axis of the jet
The expansion carried out in paper I is designed to capture the nonlinear dynamics

of a mode coupled to two separated critical layers. The model cannot therefore
capture the behaviour near the point (β, k) = (−2,

√
6), where the two critical layers

merge together, and we must develop an alternative reduced model. To this end,
we again construct an asymptotic solution to the governing equations. We begin by
transforming into a frame moving with the maximal speed of the jet; this is equivalent
to taking a slightly different basic velocity profile, U = sech2y−1. Then, the expansion
proceeds with a new set of scalings of the parameters and asymptotic sequences.
Because we develop an expansion that unfolds the region on the parameter plane
surrounding a special point, rather than a curve, we require two control parameters,
namely β and k. The new scalings take the form

∂t → ε2∂T , k2 → 6 + εµ, β → −2 + ε2β2, ν → ε4ν4 (3.1)

and (ψ,ω) ∼ ε3. These scalings are motivated by the results for the linear problem
(that is, the structure of the eigenvalues near the special point) and the need to take
a distinguished limit in which instability, nonlinearity and viscosity appear in the
reduced model simultaneously.

With the frame shift and scalings of (3.1), the governing equations become

ε2ωT − ωx tanh2 y + J(ψ,ω) = ε4ν4∇2ω + 2ψx tanh2 y(1 + 3 sech2y)− ε2β2ψx, (3.2)

ψyy + ψxx = ω. (3.3)

To deal with the change in domain size, we Fourier transform (in x) the Poisson
relation:

ω̂(n, y, T ) = ∂2
yψ̂(n, y, T )− n2(6 + εµ)ψ̂(n, y, T ), (3.4)

where the hat denotes the Fourier transform, n is the discrete Fourier mode index,
and we have used the fact that the domain size is selected so that the minimum
wavenumber is k.

We solve the equations using matched asymptotics. We first develop a regular
expansion and then demonstrate how the regular solution breaks down in an inner,
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critical layer surrounding the axis of the jet. Inside the critical layer, we find another
solution that removes the apparent singularity. Finally we match the regular (outer)
and inner solutions.

3.1. Regular expansion

We introduce the sequences

ψ = ε3ψ3 + ε4ψ4 + · · · , ω = ε3ω3 + ε4ω4 + · · · . (3.5)

At lowest order,

tanh2 y[ω3 + 2(1 + 3 sech2y)ψ3] = 0, ω3 = ψ3yy + ψ3xx, (3.6)

which has a neutral inflectional mode as the solution:

ψ3 = A(T )eikx sech2y + c.c., (3.7)

ω3 = −2 sech2y(1 + 3 sech2y)A(T )eikx + c.c. (3.8)

At O(ε4), we find

tanh2 y[ω4 + 2(1 + 3 sech2y)ψ4] = 0, ω̂4 = ψ̂4yy − 6n2ψ̂4 − µAδn1 sech2y, (3.9)

where δij is the Kronecker delta. At this order, it becomes necessary to allow for
an arbitrary jump in the streamwise velocity component, ψy , which is equivalent to
accounting for a line source of vorticity along the jet’s axis. One could also argue that
this jump is necessary to account for the singular operation of dividing by tanh2 y in
the first expression in (3.9). We then write

ψ̂4yy + (2− 6n2 + 6 sech2y)ψ̂4 = µAδn1 sech2y + Ĉ(n, T )δ(y). (3.10)

The delta-function term, C(x, T )δ(y), is a formal device used to represent the arbitrary
jump in ψ4y across y = 0. In order to ensure that this equation has a solution, we

multiply by sech2y and integrate in y, omitting a small region, [−ς, ς] with ε� ς� 1,
surrounding y = 0. Then,

Ĉ(1, T ) ≡ [ψ̂4y]
ς
−ς = − 4

3
µA, (3.11)

to order ς.
At O(ε5),

tanh2 y[ω5x + 2(1 + 3 sech2y)ψ5x] = ω3T + β2ψ3x. (3.12)

This indicates that ω5 diverges as y → 0, and is where the critical-level singularity
visibly enters the expansion.

We summarize the expansion so far by quoting the limits of the outer solution for
1� y � ε:

ψ̂(1, y, T ) = ε3(1− y2)A+ 1
2
ε4[Ĉ(1, T )|y|+ µy2A] + ε5

(
8AT
ikc
− β2A

)
log y + O(ε3y4),

(3.13)

ψ̂y(1, y, T ) = −2ε3yA+ ε4[µyA± 1
2
Ĉ(1, T )] + ε5

(
8AT
ikc
− β2A

)
1

y
+ O(ε3y), (3.14)

ω̂(1, y, T ) = −8ε3A− ε5

(
8AT
ikc
− β2A

)
1

y2
+ O(ε3y2). (3.15)

On comparing the various term in the asymptotic sequence, we discover the scalings
of the inner solution: terms first break order in ψ̂y and ω̂ when y ∼ ε.
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3.2. Inner solution

For the inner solution, we introduce the scalings and sequences

y = εY , ∂y → ε−1∂Y , (3.16)

ψ = ε3Ψ3 + ε4Ψ4 + ε5 log εΥ5 + ε5Ψ5 + · · · , ω = ε3Z; (3.17)

the logarithmic terms in the sequence are standard in critical-layer expansions and
are required because of the inner limit of the outer solution evident in (3.13)

We deal with the Poisson relation first: in terms of the inner variables,

Z =
1

ε2
ΨYY +Ψxx. (3.18)

Thus,

Ψ3Y Y = Ψ4Y Y = Υ5Y Y = 0. (3.19)

We take

Ψ3 = Aeikcx + c.c., Ψ4 = 0, Υ5 =

(
8AT
ikc
− β2A

)
eikcx + c.c., (3.20)

which ensure a match of the streamfunction to order ε5 log ε.
At order ε3,

Ψ5Y Y = Z −Ψ3xx, (3.21)

which provides the integral relation,

[Ψ5Y ]∆−∆ =

∫ ∆

−∆
ZdY + 12∆Ψ3. (3.22)

To leading order, the vorticity equation becomes

ZT − Y 2Zx +Ψ3xZY = ν4ZY Y + 8Y 2Ψ3x − β2Ψ3x. (3.23)

This relation indicates that Z ∼ −8Ψ3 as Y → ±∞, which matches onto the leading-
order term in (3.15). We now introduce a new, localized vorticity variable, ζ(x, Y , T ) =
Z + 8Ψ3, in terms of which (3.23) becomes

ζT − Y 2ζx +Ψ3xζY = ν4ζY Y + 8Ψ3T − β2Ψ3x. (3.24)

The new variable has the far-field form, ζ ∼ Y −2[β2A + 8iAT/kc]e
ikcx + c.c., which

matches the second-order term in (3.15). However, in general, (3.24) must be solved
as a nonlinear partial differential equation.

To complete the formulation of the reduced model, we must connect A(T ) and
ζ, which is accomplished by matching (3.22) with the corresponding jump from
(3.14). Let y → ς = ε∆ and Y → ±∆ denote the outer and inner coordinates in an
intermediate matching region, where ε−1 � ∆� 1. Then, the outer limit of the inner
solution is

ε4[Ψ5Y ]∆−∆ = ε4

∫ ∆

−∆
ζdY − 4ε4∆Ψ3 (3.25)

(which includes an extra factor of ε to account for the change of variable, y → Y ).
On the other hand, the inner limit of the outer solution becomes

[ψy]
ε∆
−ε∆ ∼ −4ε4∆(Aeikcx + c.c.) + ε4C + 2

ε4

∆

[(
8A

ikc
− β2A

)
eikcx + c.c.

]
. (3.26)
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On equating the two, exploiting (3.11), and formally taking ∆→∞, we find

− 4
3
µA =

kc

2π

∫ π/kc

−π/kc
dx

∫ ∞
−∞

dY e−ikcxζ ≡ 〈e−ikcxζ〉. (3.27)

Equations (3.24) and (3.27) form the reduced asymptotic model.

3.3. Canonical form

We place equations (3.24), (3.27) into a more convenient form by rescaling. We adopt

ζ = 4
3
µ$2ζ ′, A∗ = −$3A′, kcx = −x′, $Y = Y ′, $2kcT = T ′, (3.28)

where $ is a positive free parameter. On discarding the primes, this brings the reduced
equations into their final form,

ζT + Y 2ζx + ϕxζY = λζY Y − κϕT − γϕx, (3.29)

A = 〈e−ixζ〉 ≡ 1

2π

∫ π

−π
dx

∫ ∞
−∞

dY e−ixζ, ϕ = Aeix + c.c., (3.30)

where

λ =
ν4

kc$4
, κ =

6$

µ
, γ =

3β2

4µ$
. (3.31)

Finally, we may select $ to scale one of the parameters, κ and γ, to unity in
absolute value. In numerical computations, we choose $ so that γ = ±1. (Then,
κ = 9β2/2µ

2 sgn(β2µ).)

4. Conservation laws, initial conditions and symmetries
The reduced model provides a powerful tool with which we can explore critical-

layer dynamics along the axis of the jet. In this section, we begin our exploration of
the model.

The model has a number of integral relations that it inherits from the original
equations:

〈ζ〉T = 0, 〈Y ζ〉T = 0, 1
2
〈ζ2〉T + κ|A|2T = −λ〈ζ2

Y 〉, (4.1)

1
3
〈Y 3ζ − 6κ|A|2〉T − |A|2T = 2λ〈Y ζ〉, (4.2)

which correspond to conservation of vorticity and momentum in the x-direction, and
the balance of enstrophy and energy, respectively. The energy integral assumes that ζ
has the far-field form

ζ ∼ κϕTx − γϕ
Y 2

+
2κ|A|2
Y 3

. (4.3)

To ensure convergence in the remaining expressions, we always evaluate the integral
in x first. If λ = 0, the first of these relations can be expanded into 〈F(q)〉T = 0, for
any function, F(q), of the total vorticity,

q = ζ + γY + κ(ϕ− Y 3/3), (4.4)

which corresponds to the usual infinitude of Casimir invariants for an inviscid fluid.
Because our interest surrounds the dynamics of unstable modes, the best choice

for the initial condition is the shape of the relevant normal mode. However, as
we see below, normal modes do not always exist for all values of the parameters.
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A compromise is

ζ(x, Y , T = 0) =
2A0 cos x

π(1 + Y 2)
, A(T = 0) = A0, (4.5)

where A0 is a small initial amplitude that we typically take to be 10−2. The initial
vorticity distribution is then localized within the critical region, with a form similar
to any normal mode (see § 4.2), and additionally excites a small, shearing, vorticity
rearrangment (see § 4.3).

Given the initial condition in (4.5), the system is invariant under the transformation,

x→ π+ x, Y → −Y , ζ → −ζ, A→ A, ϕ→ −ϕ. (4.6)

This symmetry is also preserved in numerical solutions of both the reduced model
and the full equations, suggesting that solutions with the symmetry are stable. Con-
sequently, we exploit this symmetry in most of the numerical computations of the
reduced model to double the resolution. This also means that vorticity conservation,
〈ζ〉 = 0, is satisfied exactly for all time.

In order to perform computations with the reduced model, we rewrite the vorticity
equation in the form

qT + Y 2qx + ϕxqY = λ(q + κY 3/3)Y Y , (4.7)

and then use the operator splitting scheme described in paper I and Balmforth,
Llewellyn Smith & Young (2000). (We choose a domain of size [−6, 6] in Y for most
of the computations, and typically use 256 gridpoints in x and 1025 in Y .)

5. Linear theory of the reduced model
We now revisit the linear stability problem using the reduced model and recover

the key features of the numerically generated eigenvalues near (β, k) = (−2,
√

6). This
is also an essential exercise in understanding the dynamics of the model. We start

from the linearized equations, projected onto the Fourier mode eix: ζ = ζ̂eix + c.c.,
where

ζ̂T + iY 2ζ̂ − νζ̂Y Y = −κAT − iγA, A =

∫ ∞
−∞
ζ̂dY . (5.1)

5.1. Inviscid normal modes

The inviscid normal modes, with dependence ei(x−c2T ), satisfy

ζ̂ =
c2κ− γ
Y 2 − c2

e−ic2T . (5.2)

Hence,

D(c2) = 1− (κc2 − γ)
∫ ∞
−∞

dY

Y 2 − c2

= 0, (5.3)

defines the dispersion relation. Let c2 = λ2 ≡ (λr + iλi)
2. Then,

iπ(κλ2 − γ)− λ sgn(λi) = 0. (5.4)

There are two possible sets of solutions to this equation:

(i) λr = ±
√

(4π2κγ − 1)

4π2κ2
, |λi| = − 1

2πκ
; (5.5)

(ii) λr = 0, |λi| = 1

2πκ
[−1±√1− 4π2κγ]. (5.6)



124 N. J. Balmforth, C. Piccolo and O. M. Umurhan

5

0

–5

–10

–0.5 0 0.5 1.0 0 0.1 0.2 0.3 0.4 0.5

cr

ci

Two real
modes

One real mode
c > 0, j < 0

c < 0, j > 0
One real mode

c > 0, j > 0
No modes

c < 0, j < 0
Complex pair

b2 b

l

0.2

0

–0.2

–0.4

(b)(a)

c r a
nd

 c
i

Figure 2. (a) Regime diagram for normal modes. The shaded area corresponds to the unstable
region. (b) A sample set of eigenvalues along the cut shown by the dotted line in (a).

The solutions (i) correspond to complex conjugates; the pair (ii) are real modes.
Because of the absolute values and square roots that appear in the formulae, the
solutions do not always exist. In fact, their existence depends on the two parameters
κ and γ, and particularly their signs. A sketch that summarizes the possibilities is
given in figure 2, which should be compared with figure 1.

The complex-conjugate mode pair has the eigenvalue

c2r =
γ

κ
− 1

2π2κ2
, c2i = ± 1

2π2κ2

√
4π2κγ − 1. (5.7)

In the asymptotic theory, the collision of Rossby waves therefore occurs along the
curve 4π2κγ = 1 for κ < 0. In the original variables, this curve is µ = −π√18β2.
The bifurcation from the continuous spectrum, on the other hand, occurs when κ−1

passes through zero for γ/κ finite and positive. Then, |c2i| → 0 and c2r → γ/κ. (If γ
remains finite as κ→ −∞, the complex modes disappear into the continuous spectrum
through the branch point at the origin.) Equivalently, this bifurcation occurs along
µ = 0 for β2 > 0 and β2/µ

2 finite.
Lastly, it is important to note that the dispersion function, D(c2), is non-analytic

because the integral over Y is singular along the positive real axis. This line is where
the vorticity fluctuation (5.2) contains singular points, or critical levels, and therefore
locates the continuous spectrum. To make the dispersion function single-valued on
the complex plane, we introduce a branch cut along the positive real axis, in which
case

D(c2) = 1− iπ√
c2

(κc2 − γ) with 0 < arg(c2) 6 2π, (5.8)

which is equivalent to (5.4). Note that the inconsistent solutions to (5.5)–(5.6), obtained
by ignoring the absolute values, correspond to zeros of the dispersion function on
different Riemann sheets.

5.2. Inviscid initial-value problem

We next consider the linear initial-value problem. A Laplace transform of (5.1) with
initial condition (4.5) leads to

ζ̃ =
A0/[π(1 + Y 2)] + κA0 − (κs+ iγ)Ã

s+ iY 2
, Ã = A0

πκ+ (1− i
√

is)−1

πκs+ iπγ +
√

is
, (5.9)

where the tilde denotes the transformed variable, with coordinate s. To derive these
formulae, we evaluate the integrals in Y assuming that s is in the right half-plane,
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Figure 3. The Bromwich contour C and the sections added to it to create a closed contour. In (a)
the branch cut is chosen to lie along the ‘spectral’ cut, the negative imaginary axis. The contour then
encloses only normal modes. In (b), the cut is placed along the negative real axis, thereby allowing
the uncovering of Landau poles or quasi-modes by analytic continuation of the dispersion relation
(and the covering of normal modes in the third quadrant).

which follows if s lies along the path of the inverse Laplace transform, the Bromwich
contour (a vertical line lying to the right of any singularities of Ã(s)). These singu-
larities occur at the zeros of the denominator, which corresponds to the dispersion
function (5.8), and from any poles in the numerator. The detection of the latter,
together with the computation of the inverse transform as a whole, forces us to deal
with the non-analyticity in (5.9).

Two options are open to us for the position of the branch cut associated with
the square root in Ã(s). First, we may position the cut along the negative imaginary
axis, as shown in figure 3 (a). In this case, the cut lines up with the ‘spectral’ cut
of the continuous spectrum and the dispersion function (5.8), and is arguably the
most physical (s ≡ −ic2 = −iY 2 for any real Y ). However, a second cut, taken along
the negative real axis (see figure 3b) is more convenient in uncovering the long-time
behaviour of the mode amplitude, as explained below. The key difference between
the two cases is that one must analytically continue the denominator of Ã(s) (the
dispersion function) into the third quadrant in the second case; that is, through the
spectral cut and onto a new Riemann sheet. Equivalently, we look for zeros of D(is)
with −π/2 < arg(is) 6 3π/2, in contrast to (5.8). The continuation can therefore pick
out zeros of the continued dispersion function that do not correspond to normal
modes, and any true normal mode in the third quadrant does not contribute. The
procedure is equivalent to the uncovering of Landau damping in the Vlasov equation;
the new poles, or ‘fake’ eigenvalues are ‘Landau poles’ or ‘quasi-modes’.

With the branch cut along the negative portion of the real axis, the inverse transform
can be evaluated using a contour integral on the cut plane. To the Bromwich contour,
we add an arc enclosing the entire left half-plane and two sections that surround the
branch cut; see figure 3(b). The combined contour integral must then equal the sum
of the residues of any poles that lie in the enclosed region; these poles correspond to
any normal modes in the upper half-plane or fourth quadrant, and any quasi-modes
in the third quadrant.

We may now write

A(T ) = Ap(T ) + Abc(T ), (5.10)

where

Ap(T ) = 2A0(κ+ γ + π−1)
∑
j

sje
sjT

(κsj − iγ)(1 + isj)
(5.11)
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denotes the residues of the poles located at s = sj (the precise number of which
depends on κ and γ), and the contribution of the branch cut is

Abc(T ) = −2A0

√
i(κ+ γ + π−1)

∫ ∞
0

χ2e−χ2Tdχ

π2(γ + iκχ2)2 − iχ2
, (5.12)

which can be written in terms of error functions. For T � 1,

Abc(T ) ∼ −A0

√
i

2γ2
(κ+ γ + π−1)(πT )−3/2, (5.13)

which has the same form as the contribution found by Brunet & Haynes (1995) for
a balanced parabolic jet, and differs from that expected for monotonic shear flows
(which is generically t−2 – Brown & Stewartson 1980).

The combination of the algebraic decay in (5.13) and the exponential decay of any
quasi-modes reflects ‘continuum damping’, the phase mixing of perturbations within
the continuous spectrum. The decay is only a property of the streamfunction: a
parallel analysis for the vorticity fluctuation ζ̃(s) always produces non-decaying terms
with dependence e−iY 2T whenever there is continuum damping, which represents the
tilting and filamentation of the initial perturbation by the background shear. The
mode amplitude A(T ) decays because this variable is an integral average of the
increasingly crenellated vorticity.

5.3. Viscous normal modes

To find the viscous normal modes we Fourier transform in Y :

ζ̌pp + (c2 + iλp2)ζ̌ = −2π(κc2 − γ)Aδ(p), (5.14)

where ζ̌(p) refers to the transform of ζ̂(Y ), and p is the transformed coordinate. The
solution to this equation can be written in terms of parabolic cylinder functions:

ζ̌(p) = −π
α

(κc2 − γ)AU(b, α|p|)
U ′(b, 0)

, α = (−4iλ)1/4, b = − c2

α2
, (5.15)

where U(a, x) is the parabolic cylinder function, as defined in Abramowitz & Stegun

(1972, section 19). Because ζ̌(p = 0) ≡ ∫ ∞
−∞ ζ̂(Y ) dY , the dispersion relation then

follows:

D(c2) = 1 +
π

α
(κc2 − γ)U(b, 0)

U ′(b, 0)
≡ 1− π

α
√

2
(κc2 − γ)Γ (b/2 + 1/4)

Γ (b/2 + 3/4)
= 0, (5.16)

where Γ (x) is the Gamma-function.
To connect this dispersion relation with the inviscid version, we take the limit

λ→ 0, or |b| → ∞. By making use of Stirling’s formula, we find

0 = D(c2) ∼ 1− iπ√
c2

(κc2 − γ), −π/4 < arg(c2) 6 7π/4. (5.17)

This is identical to the inviscid dispersion relation found earlier, except for a difference
in the range of the argument of c2. Thus, the inviscid normal modes are the limits of the
viscous modes as λ→ 0, where the two ranges coincide (0 < arg(c2) 6 7π/4). However,
the inviscid eigenvalues with arg(c2) > 7π/4 are not the limits of viscous modes, and
inviscid quasi-modes in 0 < arg(c2) < −π/4 are limiting viscous eigenvalues. This
correspondence, with some twists, parallels what happens for the single-wave model
of paper I and in related systems (Balmforth 1998).
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In the opposite limit of large viscosity, λ � 1, there is one obvious asymptotic
balance, namely

c2 ≈ 2λ1/4e−iπ/8Γ (3/4)

πκΓ (1/4)
. (5.18)

Thus, modal stability depends only on the sign of κ: κ < 0 (or k2 < 6) implies
instability. Though this confirms that viscous instabilities occur inside the unstable
region of inviscid theory, the prediction of instability for γ > 0 (β < −2) is surprising.
We interpret this result as the viscous destabilization of an otherwise neutral Rossby
wave. This interpretation is confirmed by numerically solving the viscous eigenvalue
problem for periodic jets: the stability boundary is shifted to β < −2 on adding
viscosity. The asymptotic scheme only captures the shift of the boundary from
β = −2, and not its new location. In practice, for reasons uncovered in the next
section and in the Appendix, we limit ourselves to consideration of cases in which λ
remains small. Viscous destabilization is then a secondary issue that we ignore.

In addition to the modes detected above, there is also an infinite set of discrete
modes that are approximately distributed along the line arg(c2) = −π/4. More pre-
cisely, when |(κc2− γ)/√α| � 1, we must balance the diverging term in the dispersion
function by suitably arranging 3/4 + b/2 to lie near a pole of Γ (3/4 + b/2). Then,

c2 ≈ (2n+ 3/2)
√
λe−iπ/4, n = 0, 1, 2 . . . . (5.19)

In the limit λ → 0, this set of eigenvalues becomes increasingly dense and limits to
a continuous distribution. However, this distribution is not the same as the inviscid
continuum.

The results of this section illustrate some of the peculiar features of shear flow
stablity theory and the curious connections and distinctions between the inviscid and
viscous problems.

6. Nonlinear dynamics
6.1. Stable jets

According to the inviscid linear theory presented above, except in the shaded region
of figure 2, perturbations to the jet are stable, and either generate neutral Rossby
waves or decay by continuum damping. We confirm these predictions by numerically
solving the reduced, nonlinear model equations (3.29)–(3.30).

Two cases with neutral Rossby waves are shown in figure 4; these correspond
to jets in the second and third quadrants of figure 2. The initial disturbance sets
the Rossby waves ‘ringing’. As shown by the snapshots of the vorticity field, these
waves correspond to propagating meanders of the jet (there is also some residual
filamentation as part of the initial vortical disturbance is tilted over and sheared out).
The numerical solution agrees with the linear theory up to a slight difference in the
wave speed which arises chiefly because the numerical computation is performed on a
finite domain. These computations are performed with λ = 0, which signifies that the
code runs with an implicit dissipation connected to finite resolution. This implicit dis-
sipation roughly corresponds to an explicit viscosity of about 10−6 (depending on the
precise resolution) and, though small, can appreciably affect long-time computations.
For the shorter runs in figure 4, however, it is negligible.

In figure 5 we show a jet with parameter values from the first quadrant of figure 2
(again λ = 0). In this case, there are no Rossby waves and, as predicted by linear
theory, the perturbation decays by continuum damping. Moreover, there is a clear
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Figure 4. Stable jets with (a) κ = −1 and γ = 1 at T = 20, and (b) κ = 1 and γ = −1 at T = 28.
Both the numerical solution (with λ = 0) and Ap + Abc are shown. (c, d) Corresponding snapshots
of the total vorticity field, q = ζ + γY + κ(ϕ − Y 3/3), on the (x, Y )-plane, with shading as given
by the keys. In (a, b), the initial disturbance has amplitude A0 = 0.01. In (c, d), the meander is
emphasized by taking A0 = 1. Despite this large change in the initial amplitude, the oscillations
of the mode amplitude are almost identical but for an overall rescaling, which illustrates how the
modal evolution is not sensitive to the size of the initial disturbance in this parameter regime.

cross-over from the initial exponential decay of the quasi-mode to the protracted
algebraic behaviour associated with the branch cut. Again, there are some differences
with the analytical solution due to the finite domain of the numerical computation,
but the branch-cut contribution Abc is also only evaluated asymptotically.

For the low amplitudes at which the computations shown in figure 5 are performed,
nonlinear effects are largely negligible; the dynamics is chiefly that of linear continuum
damping. However, nonlinearity does become important at larger amplitude. In fact,
there appears to be a threshold in the initial amplitude A0 (which is about A0 = 0.025
at these parameter values) above which continuum damping does not continue beyond
an initial transient; see figure 6. The termination of the decay of a sufficiently strong
perturbation occurs because of the creation of a sustained nonlinear meander (see
panel b). As shown by figure 6, the meandering state contains vortices on either side
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Figure 6. A stable jet with κ = γ = 1. (a) Two computations of A/A0 with A0 = 0.1 and
0.01. (b) The nonlinear state that emerges for A0 = 0.1: contours of constant, total vorticity
q(x, Y , T ) = ζ(x, Y , T ) + κ(ϕ − Y 3/3) + γY on the (x, Y )-plane at T = 30. The equally spaced
contour levels range from −0.9 to 0.9 in steps of 0.1.

of the jet axis. These ‘cat’s eye’ patterns are also generated by unstable meanders, as
we see in the next subsection.

The termination of continuum damping by the formation of nonlinear meandering
structure is analogous to the arrest of Landau damping in plasmas (Manfredi 1997)
and of axisymmetrization in vortices (Balmforth et al. 2000). In those contexts non-
linear structures appear that again halt the return to the original equilibrium. For
shear flows, such behaviour was also previously observed by Brunet & Haynes (1995)
on the axis of a balanced Poiseuille jet, and by Held & Phillips (1987) for a flow over
the surface of a sphere. This common property points to a universal behaviour for
nonlinear continuum damping.

6.2. Unstable jets

In figure 7 we show an unstable jet with κ = γ = −1. This figure displays the growth of
the mode amplitude and the resulting effect on the critical-layer vorticity distribution.
As for the cases considered in paper I with separated critical layers, the mode grows
until the amplitude saturates as a result of the twisting-up of the vorticity distribution
into cat’s eye patterns. Thereafter, the mode amplitude does not equilibrate at a steady
level, but ‘bounces’ aperiodically. The novelty here is that two, staggered, chains of
vortical cat’s eyes form, straddling the jet axis. These are symptomatic of the merging
critical layers for (k, β) → (

√
6,−2). Figure 7 also illustrates the mixing action of
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the unstable mode, which homogenizes the vorticity within the cat’s eyes and slightly
flattens the x-averaged vorticity distribution. However, the mode saturates before that
average becomes monotonic (an ingredient in mean-field or ‘quasi-linear’ theories).

An important parameter in the reduced model is κ ∝ −β2/µ
2 (when we scale so

that γ = −1). A decrease in |κ| corresponds either to decreasing β2, and moving
horizontally to the left on the parameter plane, or to increasing µ and taking an
downward path. Either way, we proceed towards the lower stability boundary. This
leads to a change in the geometry of the nonlinear solutions that is illustrated in
figure 8. At larger |κ|, there are separated cat’s eye patterns bordering the meandering

Figure 7. An unstable jet with κ = γ = −1 and λ = 10−5. (a) The amplitude A(T ) and (b–f )
snapshots of the total vorticity q = ζ + γY + κ(ϕ − Y 3/3) as densities on the (x, Y )-plane, with
shading as given by the key and at times (b) T = 8, (c) 16, (d ) 24, (e) 32, (f) 40. In (a), the
prediction of the linear theory is also shown. (g) Cuts through the final vorticity distribution at
x = 0.95 and 4.1 (these are also marked in f ), together with the x-averaged and initial distributions
(the latter is given by Y 3/3− Y ).
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parameter λ; the curves are labelled by the value of λ. Also shown is a curve with dependence t2/3

fit to the case with λ = 10−2, and a linear fit to the case with λ = 0.1.

core of the jet. But the cat’s eyes approach the jet axis on lowering |κ|. Eventually, the
vortex island chains displace the meandering core, and form a single row of vortices
with the jet winding through them. This change in geometry implies a distinct change
in the transport properties of the flow (del Castillo-Negrete & Morrison 1993).

A second important parameter is the viscosity. In an isolated critical layer, viscosity
plays a destructive role by permitting the vorticity to diffuse outwards (see paper I).
Here, too, we find that viscosity allows the critical layer to spread diffusively, an effect
that causes the mode amplitude to grow algebraically beyond the inviscid saturation
level, see figure 9 (details of this process are given in the Appendix). For λ = 10−2,
there is a clear t2/3-dependence of |A(T )|, which mirrors the standard critical-layer
problem (Churilov & Shukhman 1996; paper I). However, the runs with higher
viscosity diverge quicker. The t2/3-dependence at λ = 10−2 arises because, for this
case, the cat’s eyes remain separated and spread individually for the length of the
computation. The more viscous cases, however, diffuse faster and the cat’s eyes merge
at an early stage of the computation. The spread of the merged vorticity pattern then
accelerates and A(T ) diverges approximately linearly with time (see the Appendix,
which also derives some further properties of the quasi-steady patterns that form
inside the expanding critical region).

6.3. Numerical computations with the governing equations

To compare with the asymptotic theory, we solve the governing equations (2.1)–(2.2)
numerically as described in paper I. The scheme is pseudo-spectral and solves the
equations on a doubly periodic domain; we tune the domain size so that an unstable
mode with k ≈ √6 has the minimum wavenumber in x, and initialize the computation
with a disturbance taking the form of the unstable mode.

The numerical computations with (2.1)–(2.2) confirm the growth and saturation of
a nonlinear meander. Moreover, the equilibrated vorticity distribution has the form
of cat’s eye patterns that approach one another and change geometry as we move left
on the parameter plane, see figure 10. Time series of the vorticity at mid-channel also
show amplitude bounces much like the asymptotic theory (figure 11). Such time series
were used in paper I in order to measure A(T ), and are a convenient measurement to
take. Here, however, the time series is not equivalent to A(T ) because the measurement
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Figure 11. Time series of the vorticity at mid-channel: a numerical solution of (2.1)–(2.2) at
x = y = 0 for k = 2.3 and β = −1.85, with (a) ν = 4.25× 10−6 and (b) ν = 1.7× 10−6. (d, e) Similar
plots for β = −1.9. The lighter curves show the actual time series of the vorticity, which contains the
relatively fast oscillation of the unstable modes; the dots show the the maxima and minina of the
oscillation. (c, f) Analogous pictures constructed using the asymptotic theory (for which κ = −1.34
and κ = −0.89 respectively) with λ = 10−4. The lighter curves show time series from eight, equally
spaced points at mid-channel (Y = 0); note that the asymptotic analysis filters the fast oscillation
of the unstable mode. The heavier curves show the contribution of the mode (given by κϕ). Also
shown by dotted lines are the mode contributions for computations with λ = 5.6× 10−3 in (c), and
λ = 1.1× 10−3 in (f).

is now taken inside the critical region, and so the signal contains the signature of
both the mode (as given by κϕ), and the twisting-up of the vorticity field (that is,
ζ(x, 0, T )). The latter introduces shorter time-scale variations into the signal, except
for lower viscosities.

Given the time series of ω(0, 0, t), we identify a ‘first bounce amplitude’ (the
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amplitude of the first maximum in |ω(0, 0, t)|) that measures the saturation level. In
figure 12, we plot this amplitude against k and β for a sequence of computations
along a curve, β = −1.9(k/2.3)2, on the parameter plane. The ‘scaling data’ shown
in the figure (that is, the dependence of the bounce amplitude on the distance to
the point (−2,

√
6)) verifies the scalings of the asymptotic theory, namely ω ∼ ε3, or

ω ∼ (6− k2)3 and ω ∼ (2 + β)3/2. Such scalings signify saturation levels that are even
lower than the ‘trapping scaling’ of plasma physics and paper I (in which ω ∼ ε2),
and significantly smaller than the ‘Hopf scalings’ of the strongly viscous problem
(with ω ∼ ε1/2).

Despite several similarities, the numerical computations with (2.1)–(2.2) and asymp-
totic theory are not in complete agreement, partly because the computational runs
are performed with fairly large values for ε (εµ ≈ 0.7 for k = 2.3, and ε2β2 ≈ 0.1
for β = −1.9). Notably, the asymptotic theory appears to overestimate the effect
of viscosity: λ = 1.11 × 10−3 and 5.3 × 10−3 for the two cases of figure 11 with
ν = 1.7× 10−6. At such values of λ, the asymptotic theory predicts mode amplitudes
that diverge relatively quickly (see panels c and f ), whereas the numerical compu-
tations show saturation near the first bounce amplitude even for larger viscosities.
At the heart of this problem is that in the vicinity of the special point, the unstable
mode is very slowly growing, and it is especially challenging to eliminate significant
dissipation in the numerical computations with (2.1)–(2.2). Indeed, with a resolution
of 512 gridpoints in y, it is difficult to reduce the viscosity sufficiently in order to
enter the regime of the asymptotics whilst retaining a high enough viscosity to ensure
the reliability of the computation (that is, that the computation is not dominated by
a spectral filter; see paper I).

7. Summary
In this article we have derived a reduced model to describe the dynamics of a

mode whose critical levels coalesce along the axis of a jet. We delineated the region of
instability in this reduced model and explored both the linear and nonlinear dynamics
that it captures. Numerical solutions of the governing equations illustrate and confirm
much of the dynamics uncovered in the asymptotic analysis.

When the jet is stable, initial perturbations excite either neutral Rossby waves that
ring persistently, or disturbances that can decay through the analogues of the Kelvin–
Orr shear-tilting mechanism and Landau damping. In the latter case, the parabolic
flow profile in the critical region has the novelty that the mean flow does not shear
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Figure 13. Satellite structures within the cat’s eyes for κ = −0.89 and λ = 10−4 (γ = −1). Three
snapshots of contours of constant total vorticity q(x, Y , T ) are displayed for times (a) T = 64,
(b) 68, (c) 72.

apart disturbances as quickly as in linear shear flows, leading to a slower characteristic
decay of low-amplitude perturbations (like t−3/2 in the streamfunction; in shear flows
without these parabolic points, streamfunction perturbations decay like t−2 – Brown
& Stewartson 1980). However, if the initial perturbations have sufficient amplitude,
this decay is halted by the formation of cat’s eye patterns in the vorticity field, as
in plasmas (Manfredi 1997) and vortices (Balmforth et al. 2000). This behaviour has
been found previously in some other shear flow studies, and suggests that ‘nonlinear
continuum damping’ (phase mixing of nonlinear perturbations) occurs only below
a threshold in initial amplitude for a wide variety of different physical systems. By
contrast, no such threshold was found by Brunet & Warn (1990), who studied the
dynamics of a disturbance excited near the axis of a parabolic jet in which the vorticity
gradient was exactly cancelled by a suitably chosen beta-parameter. Consequently,
the fluid evolved at the shearless point without twisting up any background vorticity
gradient, which is a key effect here. In Brunet & Warn’s special problem, perturbations
decay even less quickly than in coalesced critical layers, with the result that nonlinear
effects become important whatever the initial disturbance amplitude.

For unstable jets, the reduced model captures the merging of the critical levels of the
unstable waves, their inviscid saturation, and the viscous spread of the critical layer.
As in our earlier paper, inviscid saturation does not stabilize the mode amplitude at
a steady level. Instead, there are aperiodic amplitude bounces (trapping oscillations)
about the saturation level that continue for extended periods, if not indefinitely.
These bounces are intimately connected with the appearance of secondary structures
or satellites within the cat’s eyes (see figure 13). Independently of any external
perturbation, the bouncing breaks open the separating streamlines at the core of the
jet that act as transport barriers, permitting a certain amount of fluid mixing (del
Castillo-Negrete & Morrison 1993).

Finally, the theory we have presented is strictly only valid for symmetrical jets
because the scalings for the inner region fail if U ′′′(0) 6= 0. To explore the effect of the
profile’s skewness we can break the jet’s symmetry perturbatively. The analysis then
proceeds in a similar fashion, and furnishes a modified model,

ζT + Y 2ζx + ϕxζY = λζY Y − κϕT − γϕx − σY ϕx, (7.1)

ϕ = Aeix + c.c., A = 〈e−ixζ〉, (7.2)

where σ ∝ U ′′′(0). The new term, −σY ϕx, does not change the linear stability theory
but desymmetrizes the nonlinear vortical patterns that form. The system (7.1)–(7.2)
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provides a compact description of the dynamics of nearly inviscid jets near the
threshold of instability, but we have not studied it in any detail (except in the
symmetrical case) and leave its exploration for the future.

N. J. B. acknowledges an equipment grant from the Nuffield Foundation and a
Faculty Research Grant from the University of California at Santa Cruz.

Appendix. Quasi-steady critical layers
In this Appendix we explore the system

(Y 2 +ΘT )ζξ + 2aζY sin ξ − λζY Y = 2κaT cos ξ − 2a(γ + κΘT ) sin ξ, (A 1)

a = 〈ζ cos ξ〉, 0 = 〈ζ sin ξ〉, (A 2)

where A = −aeiΘ and ξ = x + Θ. This system arises when we transform into a
frame moving with a (time-dependent) speed −ΘT and drop the term ζT , and can be
obtained in a number of asymptotic limits of the reduced model.

We place the system into a more convenient form by defining

Y = η(2a)1/3, Ω = − ΘT

(2a)2/3
, λ =

Λ

(2a)4/3
, (A 3)

ζ = 1
2
(2a)1/3(γ + κΘT )ζ2 − κaT

(2a)2/3
ζ1, (A 4)

where
(η2 − Ω)ζ1ξ + ζ1η sin ξ − Λζ1ηη = −2 sin ξ,

(η2 − Ω)ζ2ξ + ζ2η sin ξ − Λζ2ηη = −2 cos ξ.

}
(A 5)

The two functions, ζ1(ξ, η;Ω,Λ) and ζ2(ξ, η;Ω,Λ) can, in principle, be tabulated along
with the subsidiary quantities

Ξcj(Ω,Λ) =

∫ ∞
∞

dη

∫ 2π

0

dξ

2π
ζj cos ξ, Ξsj(Ω,Λ) =

∫ ∞
∞

dη

∫ 2π

0

dξ

2π
ζj sin ξ. (A 6)

Thence,

aT =
Ξs1(2a)

4/3

2κ(Ξs2Ξc1 − Ξs1Ξc2) , γ + κΘT =
Ξs2(2a)

1/3

(Ξs2Ξc1 − Ξs1Ξc2) . (A 7)

Because of the appearance of the additional parameter, Ω, this system is more
difficult to analyse than the corresponding one for standard critical layers (Churilov
& Shukhman 1996). We content ourselves here with a brief discussion of the limit
Λ� 1, which can be studied further analytically.

In this limit, we define ζ1 = f(ξ, η)− 2η and ζ2 = g(ξ, η)/Λ, in which case

Φηfξ − Φξfη = Λfηη, Φηgξ − Φξgη = Λ(gηη − 2 cos ξ), (A 8)

where Φ = η3/3−Ωη+ 2 cos ξ is the total streamfunction. In both equations, we may
regard the right-hand terms as perturbations of the left-hand side. Thence, to leading
order in Λ, f and g are functions of Φ alone. By proceeding to the following order
in Λ, and enforcing a solvability condition to ensure that the next-order solution
remains periodic in ξ, we arrive at

d

dΦ
[I(Φ)fΦ] = 0,

d

dΦ
[I(Φ)gΦ − 2I1(Φ)] = 0, (A 9)



Dynamics in coalescing critical layers 137

5

0

–5
–2 2 4 860

n

g

(a) (b)

–2 2 4 860
n

0

–4

4

2

–2
I–

II–

II+

I+

III

I–

II–

II+

I+

III

Figure 14. Illustration of the streamline pattern: (a) Ω = 2, and (b) Ω = 3/4.
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where

I(Φ) =

∫
C

[η(ξ, Φ)2 − Ω] dξ, I1(Φ) =

∫
C

η(ξ, Φ) cos ξ dξ, (A 10)

and C ≡ [0, 2π] if the streamline Φ = constant is open, and is around the streamline
if it is closed.

At this stage it is helpful to consider in more detail the geometry of the streamline
pattern. As illustrated in figure 14, depending on the value of Ω, there are two possible
configurations. In each configuration, the (ξ, η)-coordinate plane is divided into three
characteristic regions: I± denote open streamline regions lying above and below the
jet axis. II± denote regions of closed streamlines corresponding to either the cat’s
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eyes of separated critical layers, or to the tear-drop shaped areas in the alternatively
connected jet configuration. Region III is the central core of the meandering jet.
In each of these regions, the functions f(Φ) and g(Φ) may take different forms;
we require continuity across the separatrices (Brown & Stewartson 1978), which we
denote by Φ = ±ΦS ≡ ±2(1−Ω3/2/3). This produces a multi-valued relation between
the streamfunction and total vorticity, which is also seen in numerical computations,
see figure 15.

Integration of (A 9), and use of the symmetry of the solution and the boundary
conditions, f → 2η and g finite as η → ±∞, leads to

f =



f+ + 4π

∫ Φ

ΦS

dΦ′/I(Φ′) in I+

f+ in II+

f+ +K1

∫ Φ

ΦS

dΦ′/I(Φ′) in III

−f+ in II−

−f+ − 4π

∫ −Φ
ΦS

dΦ′/I(Φ′) in I−,

(A 11)

g =



g+ + 2

∫ Φ

ΦS

I1(Φ
′) dΦ′/I(Φ′) in I+

g+ + 2

∫ Φ

ΦS

I1(Φ
′) dΦ′/I(Φ′) in II+

g+ + 2

∫ Φ

ΦS

I1(Φ
′) dΦ′/I(Φ′) +K2

∫ Φ

ΦS

dΦ′/I(Φ′) in III

−g+ − 2

∫ −Φ
ΦS

I1(Φ
′) dΦ′/I(Φ′) in II−

−g+ − 2

∫ −Φ
ΦS

I1(Φ
′) dΦ′/I(Φ′) in I−,

(A 12)

where

2f+ = K1

∫ ΦS

−ΦS

dΦ

I(Φ)
, 2g+ = K2

∫ ΦS

−ΦS

dΦ

I(Φ)
+

∫ ΦS

−ΦS

I1(Φ) dΦ

I(Φ)
. (A 13)

A property of the closed streamline region has also been used to eliminate an
integration constant, which follows from a generalized form of the Prandtl–Batchelor
theorem (Goldstein & Hultgren 1988).

Neither of these solutions satisfies the requirement that ζj → 0 as η → ±∞. In fact,
both predict constant, finite vorticity in the far field, which calls for the introduction
of an outer diffusion layer in which the vorticity is brought back to zero (Brown &
Stewartson 1978). A proper matching of the solution with the outer diffusion layer,
together with a more detailed match across the separatrices, presumably determines
the two constants, f+ and g+. However, even without those details, we may still
extract the asymptotic dependence of the functions Ξcj(Λ,Ω) and Ξsj(Λ,Ω), j = 1
and 2. First, because ζ1 = O(1) and ζ2 = O(Λ−1), we expect that Ξc1 = O(1) and
Ξc2 = O(Λ−1). On the other hand, because f and g are functions of Φ to order Λ, it
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follows that Ξs1 = O(Λ) and Ξs2 = O(1). Therefore,

aT =
1

2κ
λ

(
Ξs1/Λ

Ξs2Ξc1 − Ξs1Ξc2
)
, γ + κΘT = (2a)1/3

(
Ξs2

Ξs2Ξc1 − Ξs1Ξc2
)
. (A 14)

In each relation, the quantity in brackets is order one, though formally a function of
Ω = −κΘT/(2a)

2/3. Two limits are accessible here. For Ω � 1, regions I± and III
occupy most of the jet and the cat’s eye regions become confined to small areas near
η = ±√Ω. Each cat’s eye is then decoupled from the other, and the problem reduces
to the standard quasi-steady critical-layer problem (for which a ∼ t2/3; Goldstein &
Hultgren 1988; Churilov & Shukhman 1996). On the other hand, if Ω → 0 (which
arises when a becomes large), the integrals limit to constants, and we observe that
aT ≈ constant. Hence the mode amplitude grows linearly with time, as displayed by
the time series for κ = −1/4 shown in figure 15.
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